
Electronic forms solutions
using XML and PDF
A technology primer for the Adobe XML architecture

Executive summary
The purpose of this white paper is to describe how Adobe’s technology and products for electronic

forms use Portable Document Format (PDF) and XML to meet the strict requirements of

enterprise environments. As increasing numbers of people both inside and outside the firewall

need to interact with information stored in core business systems, specialized client interfaces

are not a feasible solution due to licensing, security, and manageability issues, among others.

Electronic forms are often the best solution in these cases, but they present their own challenges

of fidelity to precise visual layouts, integration with data formats supported by core systems,

and generation of final documents from multistep processes.

The Adobe XML architecture addresses these challenges by leveraging the universal Adobe®

Reader® client and a sophisticated processing model that separates user data, visual layout, and

business logic. Users can work with familiar Adobe PDF forms, while applications can interact

with XML data formatted in the schema used by the organization. These benefits are crucial

in industries where a wide variety of users interact with information from a wide variety of

systems such as insurance, financial services, and government.

The architecture assigns processing responsibility for each different type of information to

a different module, accessible through its own application programming interface (API).

This sophistication enables a clean separation of responsibility among the tasks of layout

design, data integration, and application processing. Layout designers get visual tools,

systems integrators provide their desired XML schema, and application developers use their

off-the-shelf XML tools to extract the information they need. As a result, enterprises can

quickly and cost-effectively extend their core processes and make them more efficient.

WHITE PAPER

TABLE OF CONTENTS

 1 Executive summary

 2 Introduction

 3 Operational scenario

 4 Solution requirements

 5 Technical goals

 6 Accommodating multiple views

 6 How the Adobe XML
 architecture works

 10 Leveraging XML and PDF

 11 E-Gov case study

 16 Conclusion

2
Electronics forms solutions

using XML and PDF

Introduction
To participate in enterprise business processes, employees, customers, and partners need to

interact with data stored in their own or others’ enterprise applications—whether providing

information or retrieving it. The primary users of such systems have specialized client interfaces

that support frequent interaction. However, they often constitute a relatively small fraction

of all system users. Secondary users such as employees in other departments, managers,

customers, suppliers, and partners can represent the majority of users, but their occasional

use of core systems makes specialized client interfaces impractical and inefficient. Instead, they

require a much more general interface that provides a means to interact with many different

types of core systems and supports their various work styles.

Electronic forms are an ideal general interface because most processes are already driven by

their paper counterparts. However, creating an effective electronic forms solution presents a

number of technical challenges:

• They often require a precise visual layout that corresponds to an existing paper version of

the form, to increase user adoption and meet regulatory requirements.

• In many cases, the time required to complete a form exceeds the time a user can remain

online, so electronic forms must support offline work.

• The rise of XML as a standard for defining industry-specific data formats and integrating

internal systems makes the support of arbitrary XML data a necessary capability.

• Meeting the needs of both end users and integration developers means that electronic forms

must also have a great deal of intelligence. Such intelligence includes scripting functions

that assist the user with form completion and validation logic that ensures the smooth flow

of accurate data into core systems, reducing the need for error correction later.

The technical challenges facing forms solutions are quite daunting. However, a single,

reusable framework can cleanly address the issues of fidelity to visual layout, flexibility of

data integration, intelligent interaction, multichannel delivery, and offline work. The Adobe

XML architecture combines a universal client with a comprehensive array of server-based

solutions. The technology embedded in Adobe Acrobat® 6.0 and Adobe 1.5 enables enterprises

to deliver more capable forms solutions more quickly because is it uses XML as a universal

data integration mechanism and shifts the forms design role from a skilled developer to a

skilled business user.

A wide variety of users need to
interact with core systems

Simultaneously delivering ease
of use and ease of integration is a
challenge

The Adobe XML architecture
provides a single reusable
framework to meet both
the technical and business
requirements.

3
Electronics forms solutions

using XML and PDF

Operational scenario
To design an appropriate architecture for an electronic forms solution, it is imperative to start

with a clear understanding of the problem. There are three primary criteria:

• Simplify integration with the system environment. Most enterprises have a software

infrastructure that consists of a combination of Web front ends, custom applications,

packaged applications, and backend databases. Because these pieces run on a variety of

operating systems, use different application development paradigms, and were written at

different times, most enterprises have a significant investment in integrating these disparate

components. Typically, the integration platforms either use XML natively or have an adapter

that supports XML. In some cases, industry or internal standard XML vocabularies may

shape the format of integration.

• Facilitate a smooth and efficient development process. There are roughly four types of

tasks involved in electronic forms development. In increasing order of complexity—and

thus cost—they are layout design, Web development, systems integration, and application

programming. Therefore, a cost-effective electronic forms solution should maximize the

use of visual designers and Web developers and minimize the use of integration developers

and application developers.

 Of course, all four types of development tasks will be involved in most forms applications.

The form solution can only minimize, not eliminate, the need for expensive systems

integration and application development tasks. Therefore, the forms solution must also make

it possible to keep the different types of tasks separate. Complicated scripts developed as

part of a Web development task should be cleanly encapsulated within the form definition

instead of mixed in with the layout design. Layout design must remain insulated from systems

integration through an abstraction layer. Applications should interact with the form through

published APIs or file formats. These mechanisms enable a clean separation of responsibility

for different tasks, smoothing the development process.

• Support offline work. Most business processes require a variety of forms at different stages

of the process since different people require different information for their role in the

process. For example, when applying for a car loan, applicants first fill out a form requesting

approval for a loan amount. Once they buy a particular car, they must submit a form with

all the detailed information about that vehicle. Finally, after they and the bank agree on

the final terms, they have to fill out and sign the actual promissory note. For many people,

downloading all the forms at once may be more convenient than repeatedly going back to the

bank’s Web site to get the next form. Moreover, gathering information for each of these steps

may take some research, by making phone calls to an insurance agent or reviewing paper

documents provided by the seller. Applicants would probably find it more convenient to fill

out individual pieces of information offline as they gathers them, rather than writing them

down and submitting them at once via a standard HTML form.

Support XML as the standard for
systems integration

Must minimize the number of
expensive tasks and provide clean
separation of tasks

Enable users to fill in forms at
their convenience.

4
Electronics forms solutions

using XML and PDF

Solution requirements
Given the preceding operational scenario, the minimum requirements for an enterprise-scale

electronic forms solution are as follows:

• Arbitrary XML formats. Forms will touch upon data managed by multiple core systems.

The integration technology that allows these systems to collaborate will at least support and

may require XML. Furthermore, the form must support the enterprise’s chosen schemas for

this XML. Because it is desirable to minimize the amount of work integration developers have

to do to process the form XML, the architecture must support data in arbitrary XML formats.

• Integration with Web services and databases. The form must be able to integrate with core

business systems using standard Web services protocols such as SOAP, HTTP, ADO, and

JDBC. In some cases, the form may need to be able to connect to these types of services or

data or business logic, which may not be able to be embedded in the form itself.

• Online and Offline interaction. Users may not be able to remain online for the entire time

required to complete a form. Therefore, the architecture must support online and offline

interaction. In some cases, users may work on a form online as well as offline, so the

architecture should accommodate the mixture of both modes.

• Self-contained business logic. Forms should contain all the information necessary for a

user to complete them. This information may include business logic that assists the user in

completing the form. It may also include instructions on how to connect to Web services or

back-end databases to retrieve any up-to-date information the user needs to complete the

form. However, because users may sometimes work on the form offline, this business logic

must be self-contained in the form interaction environment.

• Easy to design and change. Supporting the breadth of enterprise processes possible with

electronic forms may require the design of large numbers of such forms. Consequently,

the solution should maximize the amount of work that visual designers can perform.

The architecture should include a tool that makes it easy for designers to create and

maintain forms.

• High fidelity visual presentation. The primary purpose of electronic forms is to support

secondary users. Such users are often sensitive to the layout of form, which has led to

both legal and internal standards for paper form layouts. Therefore, the electronic forms

architecture must offer visual presentations that provide high fidelity to such standards.

• Final documents. Many form interactions such as applying for a loan or insurance result in

an official document. So while an enterprise may design a set of forms for maximum ease

of use in inputting required information, it may still need to provide the user with a final

document that conforms to a format mandated by a regulatory body or internal policy.

The architecture should make generating a final document as easy as possible.

• Universal client. In supporting secondary users of core systems it cannot be assumed that

they have any specific client software. Forms must be able to execute within a standard Web

browser. However, due to the need to support offline work, only working within a browser

is insufficient. The electronic forms architecture must provide an offline-capable universal

client as well.

5
Electronics forms solutions

using XML and PDF

Technical goals
To meet the solution requirements, certain technical goals must be achieved:

• Data abstraction layer. Supporting arbitrary XML and making form design easy can be

competing concerns. An XML format may not reflect the organization of a form most

convenient for users. A designer shouldn’t have to redesign the same form layout to

accommodate slightly different XML formats. If a particular piece of data gets dynamically

retrieved from a database or applications, a form designer shouldn’t have to treat it differently.

Therefore, the architecture requires a data abstraction layer.

• Layout-data binding. A data abstraction solves the problem of treating different formats

and sources the same from a design and execution perspective. However, it raises the issue of

making sure that the form information provided by a user finds its way to its intended place.

The architecture must have a means to bind data elements from the data abstraction layer

to the form fields specified in the layout template. This binding must support bidirectional

propagation of changes in one location to the other.

• Standalone scripting. Self-contained business logic means that the architecture must include

a standalone script interpreter. Different scripting tasks lend themselves to different types of

scripting languages. Calculating the value of one field from the values in others and evaluating

validation constraints require an expression language accessible to nonprogrammers. More

complicated behaviors, such as altering accessible fields based on results from a query to a

directory service, require a full-featured programming language. So the architecture must

support both types of languages.

• Paginated layout model. Paper form layouts are paginated. Maintaining fidelity to such

layouts requires that the form architecture have an internal layout model that supports

pagination. However, because electronic forms may expand or contract to accommodate

specific instance data, this support must be highly sophisticated to ensure that it can render

arbitrary user data within the specified pagination constraints.

• Robust security model. Interaction with core systems from a universal client that supports

offline interaction naturally raises security issues. Moreover, the execution of business

process tasks by secondary users has inherent security requirements of its own. Therefore,

the architecture must support a robust security model that provides strong authentication,

supports digital signatures, and minimizes the opportunities for malevolent code.

6
Electronics forms solutions

using XML and PDF

Accommodating multiple views
People and systems often have different perspectives on business processes. For example, an

application that manages research proposals for a government agency may store company

information, technical information, and financial information for the same proposal in the same

XML format. However, users may want this information presented on different forms because

different people in their companies fill out each category. It would be very inconvenient if the

agency had to break apart the official XML schema definition into three special definitions just

for this purpose. Instead, each type of form should be able to access the part of the official

schema that is relevant to its purpose.

The reverse is certainly possible as well. For example, customers typically perceive an order as a

single transaction. However, different systems usually handle credit checks, order fulfillment,

and order shipping, so they expect that single order form to generate multiple XML messages.

It would be impractical if users had to fill out three separate forms at the same time for each

order just to accommodate the system architecture. Instead, the form should be able to place

information from different form fields into different XML documents, each corresponding to

the message expected by a particular back-end system. This flexibility is only possible with

well-designed data abstraction, binding, and scripting capabilities.

How the Adobe XML architecture works
To meet these requirements, Adobe’s XML architecture embraces several core design principles.

Because it must support both XML data in an arbitrary format and seamless round-tripping

to core systems that use XML for integration, it uses a container for document components

that is also XML. However, due to the enormous installed base of software that supports PDF,

this XML container is interchangeable with PDF. The XML format and its corresponding PDF

representation constitute the document perspective on the architecture.

To accommodate the different perspectives of users and systems, the architecture cleanly separates

the form template and form data. While the data may often consist of XML documents, the

prevalence of non-XML data sources necessitates a flexible abstraction layer that can seamlessly

support both. The architecture combines the separate template and data at runtime to dynamically

build the form representation with which users interact. The modules that manage the template,

data, and form constitute the behavioral perspective on the architecture (Figure 1).

Map different layouts to same
data format

Map different data formats
to same layout

Use native XML container that
is interchangeable with PDF

Separate responsibility for
processing among internal modules

Figure 1: PDF acts as a container for multiple types of data and content

�
�
�

���

���� �� ��� ������
��� ����

������ ���
���� �� ������

������� ��
��� �������

���� ��� �������� �������
���� ���� �������� ���

������� �������� �� ���

������������
��� ���� ����
�� ���� ������

�������
���� ��������

������� �����
������� ���
�������� �����

��� ��������

���� ����

���� ��������

������� ����������

�������� ��������

��� ����
������ ���

���� �������

7
Electronics forms solutions

using XML and PDF

XDP and PDF file formats

An XML Data Package (XDP) file is simply an XML file that encodes a PDF file in XML, along

with the form data and a form template. Because an XDP file is an XML file, standard XML

tools, system interfaces, and Web services can work with it, and the XML data is directly

accessible. An XDP file contains five types of subassemblies, as shown in Figure 2.

• XML form data. This component is the user data encoded according to an arbitrary XML

schema chosen by the form developer during the design phase. The schema can be an industry

standard, the enterprise’s standard, or completely customized.

• XML form template. This component contains all the form intelligence, including the

mapping of XML form data to PDF form fields as well as all the business logic that controls

the interactive behavior of the document, such as calculations and data validations.

• XML configuration information. The XML form template uses this component as a global

reference for database and Web services SOAP connections.

• Other XML information. XDP files can include custom XML information such as a schema

file to facilitate validation, XML digital signatures, content metadata to facilitate archiving, or

data used by a custom digital document application. The ability to include the XML schema

in an XDP is a key capability in ensuring that other systems can easily process the XML data

contained in a form.

• PDF file. XDP files provide all the traditional PDF benefits of precision document layout and

high-fidelity printing by embedding the PDF in an XML element as base64 encoded data.

Figure 2: Anatomy of an XDP file

��� ����

��� ���� ����

��� ���� ��������

��� ������������� �����������

����� ��� �����������
���������� ������� ����������� �������� �����

��� ��������
���� ���� ������

������� ��������

XDP contains five types of
subassemblies

XDP and PDF are convertible at
the client and the server.

Because PDF and XDP are equivalent and interchangeable representations of the same

underlying electronic form, enterprises can choose which one to use depending on the specific

requirements of the process. PDF offers advantages when files size is important, documents are

large, or forms contain supplementary data such as images. XDP offers advantages when forms

must travel in XML workflows, systems need to manipulate form data with off-the-shelf XML

processing components, or forms must reside in an XML repository. Adobe provides server

software components for converting one representation to another.

8
Electronics forms solutions

using XML and PDF

Template DOM

Whenever a piece of software such as a form client accesses an XDP or PDF document, it

loads the persistent information into a set of runtime modules. The Adobe XML architecture

includes a number of different modules, whose programmatic interfaces are called document

object models or DOMs. As Figure 3 shows, the Adobe DOMs partition the operations specific

to electronic forms into several pieces. However, at the lowest level, they manipulate XML

data using the standard W3C DOM so that the in-memory representation of data remains

synchronized with the XML document representation.

Figure 3: Anatomy of an XDP file

����
���

��������
���

����
���

��� ���� ��������

��������� ��� ����

���
���

����
�

�
�

�
�

��

Uses form-specific DOMs on top
of W3C DOM

Template DOM is responsible for
layout, binding, and scripts .

Provides default binding rules based
on name and hierarchy

The Template DOM manages information related to visual layout, data binding, and

interaction rules. This information follows a declarative model, defining form components

and their relationships but not how to render them. The template includes static and dynamic

components. Static components include boilerplate text, drawing objects, and areas that contain

other static components. Dynamic components include fields and subforms that contain other

dynamic components. Static components are the same for every instance of a form that uses a

template, but dynamic components change depending on the data contained in the instance.

Dynamic components are bound to this instance data so that fields specified in the template

reflect this data. The architecture includes default binding rules that map XML data elements

to form template fields based on similarities in their respective structural hierarchies as well as

element and field names. These default rules simplify the job of template designers because they

only have to provide a specific mapping when structure and naming aren’t sufficient to calculate

the binding. Once binding is complete, changes to the fields or the data are synchronized

through cooperation with the Data DOM discussed in the next section.

9
Electronics forms solutions

using XML and PDF

The Template DOM also manages scripts in either FormCalc or ECMAScript. FormCalc is

an expression language used primarily to calculate the values of one field from the values of

other fields, much like a spreadsheet formula language. A FormCalc script attached to a field

automatically creates a dependency on other fields, and the script automatically executes

every time those fields change or whenever the Template DOM receives a global recalculation

request. ECMAScript supports a much more general set of operations such as popping up

interaction dialogs and even directly accessing the different Adobe DOMs. ECMAScript enables

programmers to use the architecture to turn electronic forms into powerful applications that

can even look up a user’s security role in an enterprise directory and then suppress access

to certain form fields based on this role. By providing both FormCalc and ECMAScript, the

architecture accommodates the different requirements for layout designers and Web developers.

Data DOM

As discussed in the previous section, the Template DOM binds template fields to instance data.

The Data DOM manages this instance data by providing a data abstraction layer. Most instance

data will reside in XML documents, in which case the Data DOM bridges high-level form data

manipulations to low-level W3C DOM operations. However, certain types of instance data may

represent very dynamic data managed by back-end applications, so the Data DOM must also

support these other sources. To this end, the Data DOM can also synchronize form data with

information in any ODBC-accessible database or any SOAP-accessible application.

The Data DOM dynamically synchronizes the instance data with the form representation managed

by the Form DOM discussed in the next section. So if a user changes the value of a field, the Data

DOM receives the event from the Form DOM and propagates the change. Depending on whether

the underlying data source is in an XML document or a dynamic data source, the Data DOM

will make the change to the in-memory W3C DOM representation or flush it to a back-end data

source. Similarly, if a script changes data in the Data DOM or if a trigger fires to update data from

a back-end system, the Data DOM will notify the Form DOM of this event.

Form DOM

The Template DOM manages form definitions for all instances of the same type, and the Data

DOM manages the data specific to each instance. They come together to support runtime form

interactions in the Form DOM. The information managed by the Form DOM is completely

derived from the combination of information in the Template and Data DOMs. It is the runtime

representation of the form as a whole. While applications and scripts can directly manipulate the

Template and Data DOMs, the most common case is for an application to use the Form DOM.

For example, suppose a user interacts with a form through Adobe Acrobat. Whenever a user

clicks in a region corresponding to a form field, types in data, and hits return, Acrobat calls an

operation in the Form DOM to change the data. The Form DOM then collaborates with the

Template DOM to execute any scripts that depend on the value of that field and then collaborates

with the Data DOM to implement the change in the underlying data representation.

Layout model

The layout model controls the page layout of forms. Layout model information includes document

characteristics as page size, headers and footers, and pagination. Usually, this type of information

is derived completely from the Form DOM and the target rendering device. However, it is possible

to exercise some control over the layout model. Programmers can include scripts in the form

template that directly manipulate the layout model, but usually specific applications include

logic for exercising such control. Adobe Form Server and Adobe Document Server are examples

of such applications.

Two scripting languages for two
different purposes

Data DOM is responsible for
abstraction of user form data.

Synchronizes display data with
underling XML data

Form DOM constitutes runtime
form representation.

Collaborates with Template and
Data DOMs

Possible to directly manipulate
layout at runtime

10
Electronics forms solutions

using XML and PDF

Leveraging XML and PDF
It’s important to remember that the sophistication of the internal architecture does not translate

into complexity for developers, integrators, and designers. In fact, the very reason that this

architecture is so sophisticated is to shield them from the underlying technical complexity of

the electronic forms problem. These different stakeholders can choose to work at the level of

sophistication necessary to solve a particular problem, for example:

• In-house forms developers can work with easy-to-use visual tools and off-the-shelf XML

processing components.

• Systems integrators (SIs) can directly manipulate XDP files.

• Independent software vendors (ISVs) can write code to the various DOM APIs.

End-user organizations will, of course, be the most common users of the architecture. They will

also be the ones that have to know the least about how it works. From their perspective, they

only need two types of software to work with it. First, layout designers will need the visual

layout tool to create form templates. Second, server developers will need off-the-shelf XML

processing components to populate and extract form instance data. Because most designers

are already comfortable with similar types of layout tools and most developers are already

comfortable with particular XML processing components, it takes very little effort to get started

with electronic forms applications.

SIs may want to manipulate XDP files as part of distributed application processing. A common

situation in electronic forms application development is for an SI specializing in a particular

industry to have its own framework that makes it easier to process that industry’s forms. Such

an SI could leverage the Adobe architecture by developing very generic templates and then

programmatically customizing them by altering the XDP files to change default values, change

validation constraints, customize calculation formulas, suppress certain subforms, or modify

the security permissions for different user roles. Because XDP is a documented XML format,

Adobe can easily help such SIs work with the portion of the XDP schema that is relevant to their

requirements. They can then use off-the-shelf XML processing components to perform the

desired operations.

ISVs may want to use this architecture to embed advanced electronic forms capabilities in their

products. Packaged application vendors may want the ability to flexibly generate forms from

within their packages and could use the various DOMs to customize one of Adobe’s server

products or build their own modules. Because Adobe’s own product developers have used these

APIs to build Adobe’s form-related products, they serve as both a proof point and technical

resource for ISVs that want to engage in this level of customization.

Three types of organizations use
the architecture

Enterprises use visual layout tools
and standard XML components.

SIs can manipulate XDP files to
support industry frameworks.

ISVs can uses DOMs directly for
highly customized form applications .

11
Electronics forms solutions

using XML and PDF

E-gov case study
One of the earliest end-user organizations to adopt electronic forms technology is the U.S.

government. It has a broad initiative to improve the efficiency of its processes, generally

known as electronic government or e-gov. The government is one of the largest consumers

of information technology in the world and therefore has evolved a diverse set of back-end

systems and integration technologies to connect them. As most citizens have experienced,

most government tasks executed by people involve the use of forms. Therefore, it should be no

surprise that the U.S. government is a leading proponent of electronic forms.

The government has identified 24 different e-gov initiatives. One of these initiatives is eGrants.

The goal of this initiative is to improve the efficiency of grant making by providing a single

online portal for grant customers that speeds grant applications, facilitates the review process,

eliminates the submission of redundant information, minimizes the administrative burden on

recipients, and standardizes the collection of financial report data. A large subset of such grants

includes those for research and development, administrated by such agencies as the Defense

Advanced Research Projects Agency (DARPA), the Homeland Security Advanced Research

Projects Agency (HSARPA), the National Institutes of Health (NIH), the National Institute

for Standards and Technology (NIST), and the National Science Foundation (NSF). Figure

4 illustrates the key role forms play in this initiative. Adobe produced a prototype for a pilot

project sponsored by the Federal CIO Council Web Services subcommittee to demonstrate

interoperability between electronic forms and Web services for this application.

���������
������������

�������
�������������

�������
��������

���������
������� �����

����������
�������

�������

���������
��������

���������
��������

������ ������
��������

����� ��������
��������

Figure 4: eGrants application topology

E-gov is a U.S. electronic
government initiative.

eGrants standardizes the process of
government grants.

12
Electronics forms solutions

using XML and PDF

In this scenario, a principal investigator (the term for a scientist involved in a research project)

who is a potential recipient of a government grant would use the eGrants portal to download,

fill out, and then submit the eGrants form. Part of the data in this form goes to the applicant

database. The data from the proposal gets converted into two types of review forms. One containing

all the information goes to the program administrator at the grant making agency, the standard

term for a government organization that administers grants. Another containing only technical

proposal information goes to outside reviewers who provide their expert opinions. The program

administrator receives all of these outside review forms and makes a decision. In practice, many

agencies have multiple rounds in their awards processes, so this cycle may repeat.

If accepted, the principal investigator and the finance department of the company receive

additional enrollment forms. These forms go to the program administrator for review and

upon acceptance, some of the data gets stored in the recipient database and some goes into

the agency’s budget system. As a project continues, the principal investigator files forms with

periodic reports that go to the program administrator, while the finance department files

forms with spending data that go to the program administrator, and the agency budget system.

At certain milestones, a government auditor must review the project finances and file forms

that go to the finance department, the program administrator, and the audit tracking system.

Form design process

While this process seems complicated, much of the software infrastructure for automation is already

in place. Because of the general e-gov directive to use XML for integration, XML formats exist in

many cases. Moreover, the infrastructure for adapting existing systems to use these formats is, to

a great extent, already in place. With paper forms already established for this process, automating

it is really an issue of bringing all the pieces together. Figures 5 through 12 illustrate the five steps

necessary to accomplish this task using a forthcoming Adobe form design tool:

1. Import existing form. The existing standard for grant applications is SF424. As Figure 5 shows,

importing the form layout is simply a matter of loading a PDF file. If this form were generated by

scanning in a paper form or outputting a file through a printer driver, the designer would have to

overlay PDF form fields. If it came from an existing PDF form, these fields would already exist.

Figure 5: Existing form layout

Proposal submission and review
involves many individuals

Administering accepted proposals
involves additional processes

Design process has five easy steps

APPLICATION FOR E-grants Pilot Version 3/03

FEDERAL ASSISTANCE 2. DATE SUBMITTED *Applicant Identifier

1. TYPE OF SUBMISSION:
 Application Pre-application

 3. DATE RECEIVED BY STATE State Application Identifier

 Construction Construction

 Non-Construction Non-Construction

 4. DATE RECEIVED BY FEDERAL AGENCY Federal Identifier

5. APPLICANT INFORMATION
 Organizational Unit:*Legal Name:
 Department:

 *Organizational DUNS: Division:

 Address:

 *Street:
 Name and telephone number of person to be contacted on matters
involving this application (give area code)

 Prefix: *First Name:

 *City: Middle Name

 *County: *Last Name

 *State: *Zip Code Suffix:

 Country: Email:

 6. *EMPLOYER IDENTIFICATION NUMBER (EIN):

-
 *Phone Number (give area code) Fax Number (give area code)

 8. *TYPE OF APPLICATION:
New Continuation Revision

 7. *TYPE OF APPLICANT:

If Revision, enter appropriate letter(s) in box(es) Other (specify)

 Other (specify) 9. *NAME OF FEDERAL AGENCY:

 10. * CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER:

-
 TITLE:

 12. AREAS AFFECTED BY PROJECT (Cities, Counties, States, etc.):

 11. *DESCRIPTIVE TITLE OF APPLICANT’S PROJECT:

 13. PROPOSED PROJECT 14. CONGRESSIONAL DISTRICTS OF:
 *Start Date: *Ending Date: a. *Applicant b. *Project

 15. ESTIMATED FUNDING: 16. *IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE
ORDER 12372 PROCESS?

 a. * Federal .00

 b. Applicant $.00

 a. Yes. THIS PREAPPLICATION/APPLICATION WAS MADE
AVAILABLE TO THE STATE EXECUTIVE ORDER 12372
PROCESS FOR REVIEW ON

 c. State $.00 DATE:

 d. Local $.00
 b. No.

PROGRAM IS NOT COVERED BY E. O. 12372

 e. Other $.00 OR PROGRAM HAS NOT BEEN SELECTED BY STATE
FOR REVIEW

 f. Program Income $.00 17. *IS THE APPLICANT DELINQUENT ON ANY FEDERAL DEBT?

 g. *TOTAL .00
 Yes If “Yes” attach an explanation. No

 18. TO THE BEST OF MY KNOWLEDGE AND BELIEF, ALL DATA IN THIS APPLICATION/PREAPPLICATION ARE TRUE AND CORRECT, AND
THE GOVERNING BODY OF THE APPLICANT HAS DULY AUTHORIZED THE DOCUMENT.
 I HAVE REVIEWED THE REQUIREMENTS THAT APPLY TO RECIPENTS OF AWARDS UNDER THIS PROGRAM AND ASSURE, AS THE DULY
AUTHORIZED REPRESENTATIVE OF THE APPLICANT, THAT THE APPLICANT WILL COMPLY WITH THOSE REQUIREMENTS AND OTHER TERMS

AND CONDITIONS IF IT RECEIVES AN AWARD Yes No
 a. Type Name of Authorized Representative b. Title c. Telephone Number (give area code)

 d. Signature of Authorized Representative e. *Date Signed

Previous Edition Usable
Authorized for Local Reproduction Prescribed by OMB Circular A-102

Standard Form 424 (Rev. x-xx)

$

$

$0

$0

$0

$0

$0

$0

$0

2003-05-31

APPLICATION FOR E-grants Pilot Version 3/03

FEDERAL ASSISTANCE 2. DATE SUBMITTED *Applicant Identifier

1. TYPE OF SUBMISSION:
 Application Pre-application

 3. DATE RECEIVED BY STATE State Application Identifier

 Construction Construction

 Non-Construction Non-Construction

 4. DATE RECEIVED BY FEDERAL AGENCY Federal Identifier

5. APPLICANT INFORMATION
 Organizational Unit:*Legal Name:
 Department:

 *Organizational DUNS: Division:

 Address:

 *Street:
 Name and telephone number of person to be contacted on matters
involving this application (give area code)

 Prefix: *First Name:

 *City: Middle Name

 *County: *Last Name

 *State: *Zip Code Suffix:

 Country: Email:

 6. *EMPLOYER IDENTIFICATION NUMBER (EIN):

-
 *Phone Number (give area code) Fax Number (give area code)

 8. *TYPE OF APPLICATION:
New Continuation Revision

 7. *TYPE OF APPLICANT:

If Revision, enter appropriate letter(s) in box(es) Other (specify)

 Other (specify) 9. *NAME OF FEDERAL AGENCY:

 10. * CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER:

-
 TITLE:

 12. AREAS AFFECTED BY PROJECT (Cities, Counties, States, etc.):

 11. *DESCRIPTIVE TITLE OF APPLICANT’S PROJECT:

 13. PROPOSED PROJECT 14. CONGRESSIONAL DISTRICTS OF:
 *Start Date: *Ending Date: a. *Applicant b. *Project

 15. ESTIMATED FUNDING: 16. *IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE
ORDER 12372 PROCESS?

 a. * Federal .00

 b. Applicant $.00

 a. Yes. THIS PREAPPLICATION/APPLICATION WAS MADE
AVAILABLE TO THE STATE EXECUTIVE ORDER 12372
PROCESS FOR REVIEW ON

 c. State $.00 DATE:

 d. Local $.00
 b. No.

PROGRAM IS NOT COVERED BY E. O. 12372

 e. Other $.00 OR PROGRAM HAS NOT BEEN SELECTED BY STATE
FOR REVIEW

 f. Program Income $.00 17. *IS THE APPLICANT DELINQUENT ON ANY FEDERAL DEBT?

 g. *TOTAL .00
 Yes If “Yes” attach an explanation. No

 18. TO THE BEST OF MY KNOWLEDGE AND BELIEF, ALL DATA IN THIS APPLICATION/PREAPPLICATION ARE TRUE AND CORRECT, AND
THE GOVERNING BODY OF THE APPLICANT HAS DULY AUTHORIZED THE DOCUMENT.
 I HAVE REVIEWED THE REQUIREMENTS THAT APPLY TO RECIPENTS OF AWARDS UNDER THIS PROGRAM AND ASSURE, AS THE DULY
AUTHORIZED REPRESENTATIVE OF THE APPLICANT, THAT THE APPLICANT WILL COMPLY WITH THOSE REQUIREMENTS AND OTHER TERMS

AND CONDITIONS IF IT RECEIVES AN AWARD Yes No
 a. Type Name of Authorized Representative b. Title c. Telephone Number (give area code)

 d. Signature of Authorized Representative e. *Date Signed

Previous Edition Usable
Authorized for Local Reproduction Prescribed by OMB Circular A-102

Standard Form 424 (Rev. x-xx)

$

$

$0

$0

$0

$0

$0

$0

$0

2003-05-31

13
Electronics forms solutions

using XML and PDF

2. Import existing schema. There is a corresponding XML schema for SF424 as shown in

Figure 6. Using a standard file open dialog, the designer can load this schema as shown in

Figure 7. Then all the data definitions from the schema appear in a list on the left-hand side

of the screen as shown in Figure 8.

Figure 6: Existing schema

Figure 7: Loading the schema

Figure 8: Schema data definitions

14
Electronics forms solutions

using XML and PDF

3. Bind form fields to schema data. Mapping a form field to a data definition is as simple as

right clicking a form field and finding the correct element in a list. Figure 9 shows this action

for the Street field. The designer would map all the other fields in a similar manner.

Figure 9: Mapping form fields to schema

Figure 10: Filling out form

4. Fill out form. Once the design is completed, tested, and deployed, users can access it

through any electronic channel. They can download it from a Web site or receive it in their

e-mail inbox. Then they use Acrobat or Acrobat Reader to fill it out as shown in Figure 10.

APPLICATION FOR E-grants Pilot Version 3/03

FEDERAL ASSISTANCE 2. DATE SUBMITTED *Applicant Identifier

1. TYPE OF SUBMISSION:
 Application Pre-application

 3. DATE RECEIVED BY STATE State Application Identifier

 Construction Construction

 Non-Construction Non-Construction

 4. DATE RECEIVED BY FEDERAL AGENCY Federal Identifier

5. APPLICANT INFORMATION
 Organizational Unit:*Legal Name:
 Department:

 *Organizational DUNS: Division:

 Address:

 *Street:
 Name and telephone number of person to be contacted on matters
involving this application (give area code)

 Prefix: *First Name:

 *City: Middle Name

 *County: *Last Name

 *State: *Zip Code Suffix:

 Country: Email:

 6. *EMPLOYER IDENTIFICATION NUMBER (EIN):

-
 *Phone Number (give area code) Fax Number (give area code)

 8. *TYPE OF APPLICATION:
New Continuation Revision

 7. *TYPE OF APPLICANT:

If Revision, enter appropriate letter(s) in box(es) Other (specify)

 Other (specify) 9. *NAME OF FEDERAL AGENCY:

 10. * CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER:

-
 TITLE:

 12. AREAS AFFECTED BY PROJECT (Cities, Counties, States, etc.):

 11. *DESCRIPTIVE TITLE OF APPLICANT’S PROJECT:

 13. PROPOSED PROJECT 14. CONGRESSIONAL DISTRICTS OF:
 *Start Date: *Ending Date: a. *Applicant b. *Project

 15. ESTIMATED FUNDING: 16. *IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE
ORDER 12372 PROCESS?

 a. * Federal .00

 b. Applicant $.00

 a. Yes. THIS PREAPPLICATION/APPLICATION WAS MADE
AVAILABLE TO THE STATE EXECUTIVE ORDER 12372
PROCESS FOR REVIEW ON

 c. State $.00 DATE:

 d. Local $.00
 b. No.

PROGRAM IS NOT COVERED BY E. O. 12372

 e. Other $.00 OR PROGRAM HAS NOT BEEN SELECTED BY STATE
FOR REVIEW

 f. Program Income $.00 17. *IS THE APPLICANT DELINQUENT ON ANY FEDERAL DEBT?

 g. *TOTAL .00
 Yes If “Yes” attach an explanation. No

 18. TO THE BEST OF MY KNOWLEDGE AND BELIEF, ALL DATA IN THIS APPLICATION/PREAPPLICATION ARE TRUE AND CORRECT, AND
THE GOVERNING BODY OF THE APPLICANT HAS DULY AUTHORIZED THE DOCUMENT.
 I HAVE REVIEWED THE REQUIREMENTS THAT APPLY TO RECIPENTS OF AWARDS UNDER THIS PROGRAM AND ASSURE, AS THE DULY
AUTHORIZED REPRESENTATIVE OF THE APPLICANT, THAT THE APPLICANT WILL COMPLY WITH THOSE REQUIREMENTS AND OTHER TERMS

AND CONDITIONS IF IT RECEIVES AN AWARD Yes No
 a. Type Name of Authorized Representative b. Title c. Telephone Number (give area code)

 d. Signature of Authorized Representative e. *Date Signed

Previous Edition Usable
Authorized for Local Reproduction Prescribed by OMB Circular A-102

Standard Form 424 (Rev. x-xx)

$

$

34 Maple Lane

Castle Rock

Hennepin

ME 123456789

US

City of Minneapolis Finance

5623781 Controller

5567

$0

$0

$0

$0

$0

$0

$0

Mr Conrad

John

Simms

III

csimms@business.com

(555) 124-3678 (567) 657-657

Mr Conrad John Simms III CEO (555) 124-3678

Special Education Development Fund.

XXXX

Friday, February 22, 2002 Friday, February 22, 2002 07

2003-05-30

2002-02-22

Indian Tribe

Department of Education

07

Saturday, February 02, 2002

Friday, February 22, 2002

2367

6786

APPLICATION FOR E-grants Pilot Version 3/03

FEDERAL ASSISTANCE 2. DATE SUBMITTED *Applicant Identifier

1. TYPE OF SUBMISSION:
 Application Pre-application

 3. DATE RECEIVED BY STATE State Application Identifier

 Construction Construction

 Non-Construction Non-Construction

 4. DATE RECEIVED BY FEDERAL AGENCY Federal Identifier

5. APPLICANT INFORMATION
 Organizational Unit:*Legal Name:
 Department:

 *Organizational DUNS: Division:

 Address:

 *Street:
 Name and telephone number of person to be contacted on matters
involving this application (give area code)

 Prefix: *First Name:

 *City: Middle Name

 *County: *Last Name

 *State: *Zip Code Suffix:

 Country: Email:

 6. *EMPLOYER IDENTIFICATION NUMBER (EIN):

-
 *Phone Number (give area code) Fax Number (give area code)

 8. *TYPE OF APPLICATION:
New Continuation Revision

 7. *TYPE OF APPLICANT:

If Revision, enter appropriate letter(s) in box(es) Other (specify)

 Other (specify) 9. *NAME OF FEDERAL AGENCY:

 10. * CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER:

-
 TITLE:

 12. AREAS AFFECTED BY PROJECT (Cities, Counties, States, etc.):

 11. *DESCRIPTIVE TITLE OF APPLICANT’S PROJECT:

 13. PROPOSED PROJECT 14. CONGRESSIONAL DISTRICTS OF:
 *Start Date: *Ending Date: a. *Applicant b. *Project

 15. ESTIMATED FUNDING: 16. *IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE
ORDER 12372 PROCESS?

 a. * Federal .00

 b. Applicant $.00

 a. Yes. THIS PREAPPLICATION/APPLICATION WAS MADE
AVAILABLE TO THE STATE EXECUTIVE ORDER 12372
PROCESS FOR REVIEW ON

 c. State $.00 DATE:

 d. Local $.00
 b. No.

PROGRAM IS NOT COVERED BY E. O. 12372

 e. Other $.00 OR PROGRAM HAS NOT BEEN SELECTED BY STATE
FOR REVIEW

 f. Program Income $.00 17. *IS THE APPLICANT DELINQUENT ON ANY FEDERAL DEBT?

 g. *TOTAL .00
 Yes If “Yes” attach an explanation. No

 18. TO THE BEST OF MY KNOWLEDGE AND BELIEF, ALL DATA IN THIS APPLICATION/PREAPPLICATION ARE TRUE AND CORRECT, AND
THE GOVERNING BODY OF THE APPLICANT HAS DULY AUTHORIZED THE DOCUMENT.
 I HAVE REVIEWED THE REQUIREMENTS THAT APPLY TO RECIPENTS OF AWARDS UNDER THIS PROGRAM AND ASSURE, AS THE DULY
AUTHORIZED REPRESENTATIVE OF THE APPLICANT, THAT THE APPLICANT WILL COMPLY WITH THOSE REQUIREMENTS AND OTHER TERMS

AND CONDITIONS IF IT RECEIVES AN AWARD Yes No
 a. Type Name of Authorized Representative b. Title c. Telephone Number (give area code)

 d. Signature of Authorized Representative e. *Date Signed

Previous Edition Usable
Authorized for Local Reproduction Prescribed by OMB Circular A-102

Standard Form 424 (Rev. x-xx)

$

$

34 Maple Lane

Castle Rock

Hennepin

ME 123456789

US

City of Minneapolis Finance

5623781 Controller

5567

$0

$0

$0

$0

$0

$0

$0

Mr Conrad

John

Simms

III

csimms@business.com

(555) 124-3678 (567) 657-657

Mr Conrad John Simms III CEO (555) 124-3678

Special Education Development Fund.

XXXX

Friday, February 22, 2002 Friday, February 22, 2002 07

2003-05-30

2002-02-22

Indian Tribe

Department of Education

07

Saturday, February 02, 2002

Friday, February 22, 2002

2367

6786

15
Electronics forms solutions

using XML and PDF

Figure 11: Saving as XML

Figure 12: Resulting XML document

5. Generate validated XML output. Once a user fills out the form, there is a fully validated

XML document compliant with the SF424 schema. Figure 11 shows how to save as XML,

and Figure 12 shows the resulting document.

The application would submit XML
via Web or Web service

Many industries have standard XML
vocabularies like E-Gov

In practice, of course, most users would not generate a separate XML file. Instead they would

submit the entire form PDF file via the Web or e-mail to the eGrants portal. A small piece

of server software generic to all XML/PDF forms would extract the XML file and route it to

the appropriate back-end applications. So by leveraging the existing form layouts and data

formats, a visual design tool and small piece of server software are all that’s necessary to finish

automating a reasonably complicated process.

The ease of this development process is by no means unique to e-gov. Many other industries

have adopted standardized XML schema, have existing form layouts, or both. Manufacturing

has been using the XML-based RosettaNet standard for years. The insurance industry has the

standard ACORD schema and associated form layouts. The financial services industry has

numerous XML standards. For all the examples of applications built on top of Adobe’s XML

architecture, go to http://partners.adobe.com/asn/tech/pdf/samples.jsp.

Adobe Systems Incorporated • 345 Park Avenue, San Jose, CA 95110-2704 USA • www.adobe.com

Adobe, the Adobe logo, the Adobe PDF logo, Acrobat, Reader, and “Tools for the New Work” are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.

© 2003 Adobe Systems Incorporated. All rights reserved. Printed in the USA. 95002660 11/03

Conclusion
The Adobe XML architecture separates visual layout from data schema definition. This gives

enterprises an extremely flexible tool for creating and extending business processes that work

seamlessly with core systems. An enterprise can start from an existing form layout and work

towards core systems or start from an existing XML format and work towards end users. It can

adopt electronic forms as a top-down strategic initiative or as a series of bottom-up tactical

projects. No matter what the starting point or adoption approach, the Adobe architecture

provides the catalyst necessary to marry user and system representations so that the enterprise

can achieve a seamless flow of process data.

This carefully designed architecture addresses the issue inherent in extending enterprise

processes. While users and systems may agree on individual data elements, they almost

never agree on how to organize them. Users adopt a point of view based on the flow of

their job tasks. Systems adopt a point of view based on the schemas of their databases. The

sophisticated factoring of data and assignment to one of the DOMs combined with event-driven

synchronization is what makes it possible to integrate these competing points of view.

By addressing this complexity within the underlying architecture, Adobe shields enterprise

designers and developers from it. Designers simply import, modify, and design visual elements

using a high-productivity layout tool just like the ones they’ve used for years. Developers simply

populate, extract, and process the underlying XML data using the standard software components

they’ve used for years. Together, they give users electronic forms that mirror the popular usage

model of paper forms, but with all the additional intelligence and efficiency possible with

software. As a result, enterprise business processes can extend farther and execute faster.

The Adobe XML architecture
enables a seamless flow of data.

Use of multiple DOMs integrate user
and system points of view

Therefore, layout design and
systems integration are both easy

FOR MORE INFORMATION
about the Adobe XML architecture,
please visit www.adobe.com/xml.

http://www.adobe.com
http:www.adobe.com/xml

	Executive summary
	Introduction
	Operational scenario
	Solution requirements
	Technical goals
	Accommodating multiple views
	How the Adobe XML architecture works
	XDP and PDF file formats
	Template DOM
	Data DOM
	Form DOM
	Layout model
	Leveraging XML and PDF
	E-gov case study
	Conclusion

